Detection of Cyber Threats to Cyber-Physical Systems Using Artificial Intelligence

Document Type : Research Article

Author

استادیار دانشکده علوم و فنون فارابی

10.22034/amn.2024.376

Abstract

Cyber-Physical Systems (CPS), by integrating physical and cyber components, have revolutionized various industries. However, with their increasing integration into complex networks, these systems face a growing array of sophisticated cyber threats. This article investigates cyber threats to CPS and the role of artificial intelligence (AI) in their detection and mitigation. The study first analyzes various cyber threats targeting CPS, including malware (e.g., ransomware and trojans), distributed denial-of-service (DDoS) attacks, zero-day attacks, and insider threats. Subsequently, AI-based solutions to counter these threats are proposed. The research also addresses practical challenges in implementing these solutions, such as the need for reliable training data, real-time processing limitations, and resource optimization. The study population consists of six domain experts, with data analyzed through interviews and MaxQDA software. 
The results indicate that optimizing and evaluating equipment, combined with AI, enables effective detection of cyber threats to CPS. By presenting practical examples and reviewing evaluation metrics (e.g., detection rate and false positive rate), the article demonstrates that integrating various AI methods can significantly enhance the security of cyber-physical systems. 

Keywords


  1. Alowaidi, M., Sharma, S. K., AlEnizi, A., & Bhardwaj, S. (2023). Integrating artificial intelligence in cyber security for cyber-physical systems. Electronic Research Archive, 31(4).

    Baheti, R., & Gill, H. (2011). Cyber-physical systems. The Impact of Control Technology, 12(1), 161–166.

    Carreras Guzman, N. H., Wied, M., Kozine, I., & Lundteigen, M. A. (2020). Conceptualizing the key features of cyber‐physical systems in a multi‐layered representation for safety and security analysis. Systems Engineering, 23(2), 189–210.

    Davidson, R. (2020). Cyber-physical production networks, artificial intelligence-based decision-making algorithms, and big data-driven innovation in Industry 4.0-based manufacturing systems. Economics, Management, and Financial Markets, 15(3), 16–22.

    Erbschloe, M. (2004). Trojans, worms, and spyware: A computer security professional’s guide to malicious code. Elsevier.

    Fitzgerald, J., Larsen, P. G., & Pierce, K. (2019). Multi-modelling and co-simulation in the engineering of cyber-physical systems: Towards the digital twin. In From Software Engineering to Formal Methods and Tools, and Back: Essays Dedicated to Stefania Gnesi on the Occasion of Her 65th Birthday (pp. 40–55). Springer.

    Gurjanov, A. V., Babenkov, V. I., Zharinov, I. O., & Zharinov, O. O. (2022). Cyber-physical systems control principles and congregation of resources for a centralized and decentralized artificial intelligence. 2373(6), 062017.

    Hussaini, A., Qian, C., Liao, W., & Yu, W. (2022). A taxonomy of security and defense mechanisms in digital twins-based cyber-physical systems. 597–604.

    Jillepalli, A. A., Sheldon, F. T., de Leon, D. C., Haney, M., & Abercrombie, R. K. (2017). Security management of cyber physical control systems using NIST SP 800-82r2. 1864–1870.

    Mahmoud, M. S., Hamdan, M. M., & Baroudi, U. A. (2019). Modeling and control of cyber-physical systems subject to cyber attacks: A survey of recent advances and challenges. Neurocomputing, 338, 101–115.

    Szor, P. (2005). The art of computer virus research and defense. Pearson Education.

    Veith, E. M., Fischer, L., Tröschel, M., & Nieße, A. (2019). Analyzing cyber-physical systems from the perspective of artificial intelligence. 85–95.

    1. Duo, M. Zhou, & A. Abusorrah. (2022). A Survey of Cyber Attacks on Cyber Physical Systems: Recent Advances and Challenges. IEEE/CAA Journal of Automatica Sinica, 9(5), 784–800. https://doi.org/10.1109/JAS.2022.105548

    Yaacoub, J.-P. A., Salman, O., Noura, H. N., Kaaniche, N., Chehab, A., & Malli, M. (2020a). Cyber-physical systems security: Limitations, issues and future trends. Microprocessors and Microsystems, 77, 103201.

    Yaacoub, J.-P. A., Salman, O., Noura, H. N., Kaaniche, N., Chehab, A., & Malli, M. (2020b). Cyber-physical systems security: Limitations, issues and future trends. Microprocessors and Microsystems, 77, 103201.

    Zang, T., Tong, X., Li, C., Gong, Y., Su, R., & Zhou, B. (2025). Research and Prospect of Defense for Integrated Energy Cyber–Physical Systems Against Deliberate Attacks. Energies, 18(6). https://doi.org/10.3390/en18061479

    پاشایی، ا. (1403). استخراج TTPهای حملات با کمک یادگیری ماشین. دانشگاه صنعتی شاهرود.

    خرم، م., رحمانی منش، م. (1402). سامانه تشخیص حملات DDOS با استفاده از روش دسته‌بندی گروهی و رویکرد یادگیری فعال.

    خسروی، م. (1399). مدل‌سازی و تشخیص حملات سایبری مبتنی بر تهدیدات پایدار پیشرفته (APT). دانشگاه اصفهان.

    لک، م. (1400). تحلیل تأثیر تهدیدات سایبری بر امنیت ملّی جمهوری اسلامی ایران. دانشگاه اصفهان.

    نریمانی،  احسان، لطفی، فریده و هدایتی، سبحان. (1402). مروری بر کاربردهای یادگیری ماشین در مرکز عملیات امنیت و تشخیص حملات. پژوهش‌های کاربردی در فنی و مهندسی، 32(4), 211–225.